4 Canonical and standard forms

- A Boolean (logic) function can be expressed in a variety of algebraic forms. For example

$$
y=c \cdot \bar{a}+c \cdot b=c(\bar{a}+b)=c(\bar{c}+b+\bar{a})
$$

- Each algebraic form entails specific gate implementation.
- A Boolean function can be uniquely described by its truth table, or in one of the canonical forms.
- Two dual canonical forms of a Boolean function are available:
- The sum of minterms (SoM) form
- The product of maxterms (PoM) form.
- A minterm is a product of all variables taken either in their direct or complemented form
- A maxterm is a sum of all variables taken either in their direct or complemented form
4.1 Minterms. n-to- 2^{n} Decoders
- Consider, for example, all possible logic products of three variables $\mathbf{x}=\left(x_{2}, x_{1}, x_{0}\right)$
- There are $2^{3}=8$ different minterms that can be written in the form $m_{i}=\tilde{x}_{2} \cdot \tilde{x}_{1} \cdot \tilde{x}_{0}$ where \tilde{x} represents either variable x or its complement \bar{x}

All three-variable minterms are listed in the following table:

\mathbf{x}	x_{2}	x_{1}	x_{0}	Minterms	$m_{0} m_{1} m_{2} m_{3} m_{4} m_{5} m_{6} m_{7}$							
0	0	0	0	$m_{0}=\bar{x}_{2} \cdot \bar{x}_{1} \cdot \bar{x}_{0}$	1	0	0	0	0	0	0	0
1	0	0	1	$m_{1}=\bar{x}_{2} \cdot \bar{x}_{1} \cdot x_{0}$	0	1	0	0	0	0	0	0
2	0	1	0	$m_{2}=\bar{x}_{2} \cdot x_{1} \cdot \bar{x}_{0}$	0	0	1	0	0	0	0	0
3	0	1	1	$m_{3}=\bar{x}_{2} \cdot x_{1} \cdot x_{0}$	0	0	0	1	0	0	0	0
4	1	0	0	$m_{4}=x_{2} \cdot \bar{x}_{1} \cdot \bar{x}_{0}$	0	0	0	0	1	0	0	0
5	1	0	1	$m_{5}=x_{2} \cdot \bar{x}_{1} \cdot x_{0}$	0	0	0	0	0	1	0	0
6	1	1	0	$m_{6}=x_{2} \cdot x_{1} \cdot \bar{x}_{0}$	0	0	0	0	0	0	1	0
7	1	1	1	$m_{7}=x_{2} \cdot x_{1} \cdot x_{0}$	0	0	0	0	0	0	0	1

The logic circuit that generates all minterms is called an n-to- 2^{n} decoder:

Example: Logic structure of a 2-to-4 decoder

\mathbf{x}	x_{1}	x_{0}	Minterms	$m_{0} m_{1} m_{2} m_{3}$			
0	0	0	$m_{0}=\bar{x}_{1} \cdot \bar{x}_{0}$	1	0	0	0
1	0	1	$m_{1}=\bar{x}_{1} \cdot x_{0}$	0	1	0	0
2	1	0	$m_{2}=x_{1} \cdot \bar{x}_{0}$	0	0	1	0
3	1	1	$m_{3}=x_{1} \cdot x_{0}$	0	0	0	1

A symbol

or

4.2 The Sum-of-Minterms (SoM) canonical form of a logic function

- Any logic function y of n variables can be expressed as the logic sum of products of minterms and the respective values of the function, that is:

$$
\begin{equation*}
y=f\left(x_{n-1}, \ldots, x_{0}\right)=\sum_{i=0}^{2^{n}-1} y_{i} \cdot m_{i} \tag{4.1}
\end{equation*}
$$

- It is clearly equivalent to the sum of minterms for which the values of the function are 1 , say, $y_{j}=1$

$$
\begin{equation*}
y=f\left(x_{n-1}, \ldots, x_{0}\right)=\sum_{\text {for all } j \text { such that } y_{j}=1} m_{j} \tag{4.2}
\end{equation*}
$$

Example of a 3-variable function

$$
\begin{array}{||c|ccc||c||l|}
\hline \mathbf{x} & x_{2} & x_{1} & x_{0} & y & m_{j} \\
\hline \hline 0 & 0 & 0 & 0 & 0 & \\
1 & 0 & 0 & 1 & 0 & \\
2 & 0 & 1 & 0 & 1 & m_{2} \\
3 & 0 & 1 & 1 & 0 & \\
4 & 1 & 0 & 0 & 1 & m_{4} \\
5 & 1 & 0 & 1 & 1 & m_{5} \\
6 & 1 & 1 & 0 & 0 & \\
7 & 1 & 1 & 1 & 1 & m_{7} \\
\hline
\end{array}
$$

$$
\begin{aligned}
y & =0 \cdot m_{0}+0 \cdot m_{1}+1 \cdot m_{2}+0 \cdot m_{3}+1 \cdot m_{4}+1 \cdot m_{5}+0 \cdot m_{6}+1 \cdot m_{7} \\
& =m_{2}+m_{4}+m_{5}+m_{7} \\
& =\sum(2,4,5,7)-\text { a commonly used short notation } \\
& =\bar{x}_{2} \cdot x_{1} \cdot \bar{x}_{0}+x_{2} \cdot \bar{x}_{1} \cdot \bar{x}_{0}+x_{2} \cdot \bar{x}_{1} \cdot x_{0}+x_{2} \cdot x_{1} \cdot x_{0}
\end{aligned}
$$

4.3 Decoder-based implementation of a logic function. Solution 1.

Any logic function can be implemented using a decoder and a logic OR gate.

4.4 Maxterms

- A logic sum (OR) of all variables taken in their direct or complemented form is called a Maxterm, M_{i}.
- A maxterm is a complement of an equivalent minterm

$$
M_{i}=\bar{m}_{i}=\overline{\tilde{x}_{n-1} \cdot \ldots \tilde{x}_{0}}=\overline{\tilde{x}}_{n-1}+\ldots \overline{\tilde{x}}_{0}
$$

where $\overline{\tilde{x}}$ represents either variable x or its complement \bar{x}

For example, all three-variable Maxterms are listed in the following table:

\mathbf{x}	x_{2}	x_{1}	x_{0}	Maxterms	$M_{0} M_{1} M_{2} M_{3} M_{4} M_{5} M_{6} M_{7}$							
0	0	0	0	$M_{0}=x_{2}+x_{1}+x_{0}$	0	1	1	1	1	1	1	1
1	0	0	1	$M_{1}=x_{2}+x_{1}+\bar{x}_{0}$	1	0	1	1	1	1	1	1
2	0	1	0	$M_{2}=x_{2}+\bar{x}_{1}+x_{0}$	1	1	0	1	1	1	1	1
3	0	1	1	$M_{3}=x_{2}+\bar{x}_{1}+\bar{x}_{0}$	1	1	1	0	1	1	1	1
4	1	0	0	$M_{4}=\bar{x}_{2}+x_{1}+x_{0}$	1	1	1	1	0	1	1	1
5	1	0	1	$M_{5}=\bar{x}_{2}+x_{1}+\bar{x}_{0}$	1	1	1	1	1	0	1	1
6	1	1	0	$M_{6}=\bar{x}_{2}+\bar{x}_{1}+x_{0}$	1	1	1	1	1	1	0	1
7	1	1	1	$M_{7}=\bar{x}_{2}+\bar{x}_{1}+\bar{x}_{0}$	1	1	1	1	1	1	1	0

The logic circuit that generates all Maxterms is also called an n-to- 2^{n} decoder:

Note that decoder producing maxterms has circles at its outputs

4.5 The Product-of-Maxterms (PoM) canonical form of a logic function

- Using the duality principle we can re-write eqn (4.1) in the following form:
- Any logic function y of n variables can be expressed as the logic product of sums of maxterms and the respective values of the function, that is:

$$
\begin{equation*}
y=f\left(x_{n-1}, \ldots, x_{0}\right)=\prod_{i=0}^{2^{n}-1}\left(y_{i}+M_{i}\right) \tag{4.3}
\end{equation*}
$$

- It is clearly equivalent to the product of Maxterms for which the values of the function are 0 , say, $y_{j}=0$

$$
\begin{equation*}
y=f\left(x_{n-1}, \ldots, x_{0}\right)=\prod_{\text {for all } j \text { such that } y_{j}=0} M_{j} \tag{4.4}
\end{equation*}
$$

Example of a 3-variable function

\mathbf{x}	x_{2}	x_{1}	x_{0}	y	m_{j}
0	0	0	0	0	M_{0}
1	0	0	1	0	M_{1}
2	0	1	0	1	
3	0	1	1	0	M_{3}
4	1	0	0	1	
5	1	0	1	1	
6	1	1	0	0	M_{6}
7	1	1	1	1	

$$
\begin{aligned}
y & =\left(0+M_{0}\right)\left(0+M_{1}\right)\left(1+M_{2}\right)\left(0+M_{3}\right)\left(1+M_{4}\right)\left(1+M_{5}\right)\left(0+M_{6}\right)\left(1+M_{7}\right) \\
& =M_{0} \cdot M_{1} \cdot M_{3} \cdot M_{6} \\
& =\prod(0,1,3,6)-\text { a commonly used short notation } \\
& =\left(x_{2}+x_{1}+x_{0}\right)\left(x_{2}+x_{1}+\bar{x}_{0}\right)\left(x_{2}+\bar{x}_{1}+\bar{x}_{0}\right)\left(\bar{x}_{2}+\bar{x}_{1}+x_{0}\right)
\end{aligned}
$$

4.6 More on Decoder-based implementation of a logic function.

Using AND, NOR, OR and NAND gates.

4.7 Standard forms

- Implementations of logic functions based on canonical forms are called two-level implementations (inverters of input variables are not counted)
- It is often possible to simplify canonical forms into standard forms:
- The Sum-of-Minterms (SoM) form can be simplified into a Sum-of-Products (SoP) form.
- The Product-of-Maxterm (PoM) form can be simplified into a Product-of-Sums (PoS) form

Examples:

$$
\begin{aligned}
& y_{1}=a \cdot \bar{b}+\bar{a} \cdot b \cdot c \\
& y_{2}=(a+\bar{b})(\bar{a}+b+c)
\end{aligned}
$$

4.8 NAND and NOR based implementations

NAND implementation can be easily obtained from the Sum-of-Products form.

Example

NOR implementation can be easily obtained from the Product-of-Sums form.

Example

Product-of-Sums form can also be implemented as an Inverted-Sum-of-Products form

EXAMPLE

$$
\begin{aligned}
y & =\left(x_{1}+\bar{x}_{2}\right)\left(\bar{x}_{0}+x_{1}+x_{3}\right)\left(x_{1}+\overline{x_{2}}+\overline{x_{3}}\right) \\
& =\overline{x_{1} \cdot x_{2}+x_{0} \cdot \bar{x}_{1} \cdot \bar{x}_{3}+\overline{x_{1}} x_{2} \cdot x_{3}}
\end{aligned}
$$

Sum-of-Products form can also be implemented as an Inverted-Product-of-Sums form
Example

$$
y=x_{2} \bar{x}_{1}+\bar{x}_{2} x_{0}=\overline{\left(\overline{x_{2}}+x_{1}\right)\left(x_{2}+\bar{x}_{0}\right)}
$$

